- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Gaudi, B_Scott (2)
-
Asnodkar, Anusha_Pai (1)
-
Baggett, Nicholas (1)
-
Bechter, Andrew_J (1)
-
Bechter, Eric_B (1)
-
Conrad, Al (1)
-
Crass, Jonathan (1)
-
Crepp, Justin_R (1)
-
Dulz, Shannon (1)
-
Edwards, Billy (1)
-
Engstrom, Matthew (1)
-
Ertel, Steve (1)
-
Hamper, Randall (1)
-
Harris, Robert (1)
-
Hinz, Philip (1)
-
Johnson, Marshall_C (1)
-
Ketterer, Ryan (1)
-
King, David (1)
-
Kopon, Derek (1)
-
Kuchner, Marc (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We explore the prospects for Twinkle to determine the atmospheric composition of the nearby terrestrial-like planet LTT 1445 Ab, including the possibility of detecting the potential biosignature ammonia (NH3). At a distance of 6.9 pc, this system is the second closest known transiting system and will be observed through transmission spectroscopy with the upcoming Twinkle mission. Although LTT 1445 Ab has been suggested to be a candidate for a Hycean world, constraints on the interior composition based on its mass and radius suggests that the planet lacks a substantial water layer, and thus the proposed Hycean scenario is disfavoured. We use PETITRADTRANS and a Twinkle simulator to simulate transmission spectra for the more likely scenario of a cold Haber world for which NH3 is considered to be a biosignature. We study the detectability under different scenarios: varying hydrogen fraction, concentration of ammonia, and cloud coverage. We find that ammonia can be detected at an ∼3σ level for optimal (non-cloudy) conditions with 25 transits and a volume mixing ration of 4.0 ppm of NH3. We provide examples of retrieval analysis to constrain potential NH3 and H2O in the atmosphere. Our study illustrates the potential of Twinkle to characterize atmospheres of potentially habitable exoplanets.more » « less
-
Crepp, Justin_R; Crass, Jonathan; Bechter, Andrew_J; Sands, Brian_L; Ketterer, Ryan; King, David; Kopon, Derek; Hamper, Randall; Engstrom, Matthew; Smous, James_E; et al (, The Astronomical Journal)Abstract Precision radial velocity spectrographs that use adaptive optics (AO) show promise to advance telescope observing capabilities beyond those of seeing-limited designs. We are building a spectrograph for the Large Binocular Telescope (LBT) named iLocater that uses AO to inject starlight directly into single mode fibers. iLocater's first acquisition camera system (the SX camera), which receives light from one of the 8.4 m diameter primary mirrors of the LBT, was initially installed in summer 2019 and has since been used for several commissioning runs. We present results from first-light observations that include on-sky measurements as part of commissioning activities. Imaging measurements of the bright B3IV star 2 Cygni (V= 4.98) resulted in the direct detection of a candidate companion star at an angular separation of onlyθ = 70 mas. Follow-up AO measurements using Keck/NIRC2 recover the candidate companion in multiple filters. AnR ≈ 1500 miniature spectrograph recently installed at the LBT named Lili provides spatially resolved spectra of each binary component, indicating similar spectral types and strengthening the case for companionship. Studying the multiplicity of young runaway star systems like 2 Cygni (36.6 ± 0.5 Myr) can help to understand formation mechanisms for stars that exhibit anomalous velocities through the Galaxy. This on-sky demonstration illustrates the spatial resolution of the iLocater SX acquisition camera working in tandem with the LBT AO system; it further derisks a number of technical hurdles involved in combining AO with Doppler spectroscopy.more » « less
An official website of the United States government
